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Analytical Procedures for Continuous Data Level 
Auditing: Continuity Equations  

  

Abstract: 

This paper designs a Continuous Data Level Auditing system utilizing business 
process based analytical procedures and evaluates the system’s performance using 
disaggregated transaction records of a large healthcare management firm. An important 
innovation in the proposed architecture of the CDA system is the utilization of analytical 
monitoring as the second (rather than the first) stage of data analysis. The first component 
of the system utilizes automatic transaction verification to filter out exceptions, defined as 
transactions violating formal business process rules. The second component of the system 
utilizes business process based analytical procedures, denoted here ―Continuity Equations‖, 
as the expectation models for creating business process audit benchmarks. Our first 
objective is to examine several expectation models that can serve as the continuity equation 
benchmarks: a Linear Regression Model, a Simultaneous Equation Model, two Vector 
Autoregressive models, and a GARCH model. The second objective is to examine the 
impact of the choice of the level of data aggregation on anomaly detection performance. The 
third objective is to design a set of online learning and error correction protocols for 
automatic model inference and updating. Using a seeded error simulation approach, we 
demonstrate that the use of disaggregated business process data allows the detection of 
anomalies that slip through the analytical procedures applied to more aggregated data. 
Furthermore, the results indicate that under most circumstances the use of real time error 
correction results in superior performance, thus showing the benefit of continuous auditing. 
 
Keywords: continuous auditing, analytical procedures, error correction. 
Data availability: The data is proprietary. Please contact the authors for details. 
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I. Introduction 

Continuous Auditing with Transaction Data Availability 

Business is in the process of a fundamental transformation towards the digital 

economy (Vasarhelyi and Greenstein 2003). With many companies having implemented 

networked integrated Enterprise Resource Planning (ERP) systems (such as SAP ERP, 

Oracle E-Business Suite, PeopleSoft Enterprise) as part of the core of their basic 

information infrastructure, management and control of organizations is shifting to a data-

centric, process-oriented paradigm.2 The requirements of Section 404 of the Sarbanes-Oxley 

Act for rigorous controls over financial reporting also focus attention on how data is 

processed and used within the company, while the mining of customer and operational data 

is essential for company’s pursuing strategies of customer satisfaction and total quality 

control.  

In response to these fundamental changes in the business environment, public 

accounting firms and internal auditing departments are now facing the opportunities and 

challenges associated with the development and deployment of continuous auditing (CA) which 

comprises largely automated data intensive audit procedures with decreased latency between 

the transaction event and the provision of assurance.3 In the limit, the auditor would access 

real time streams of the entire universe of the company’s transactions rather than being 

restricted to a small sample gathered at a single moment of time (as in the annual inventory 

count). The feasibility of creating such a real time, automated audit methodology arises from 

the capability of the company’s systems to make available to auditors business data of far 

finer granularity in time and detail than has ever been cost effectively accessible before.4 

Continuous auditing is becoming an increasingly important area in accounting, both 

in practice and in research, with conferences held around the world attended by both 

academics and practitioners.5 The major public accounting firms all have CA initiatives under 

way, and major software vendors are also now aggressively developing and marketing CA 

                                                 
2 Vasarhelyi and Greenstein (2003). 
3 The CICA/AICPA report defines CA as “a methodology that enables independent auditors to provide written assurance on 
a subject matter using a series of auditors’ reports issued simultaneously with, or a short period of time after, the occurrence of events 
underlying the subject matter.”  http://www.cica.ca/index.cfm/ci_id/989/la_id/1.htm 
4 Vasarhelyi et al. (2004).  
5 Alles et al. (2006b). 

http://www.cica.ca/index.cfm/ci_id/989/la_id/1.htm
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software solutions. PricewaterhouseCoopers (2006) in their survey state that “Eighty-one 

percent of 392 companies responding to questions about continuous auditing reported that they either had a 

continuous auditing or monitoring process in place or were planning to develop one. From 2005 to 2006, the 

percentage of survey respondents saying they have some form of continuous auditing or monitoring process 

within their internal audit functions increased from 35% to 50%—a significant gain.”6 On the research 

front, the ongoing survey of the CA research literature by Brown et al. (2006) lists at least 60 

papers in the area, ranging from behavioral research to system design, analytical models and 

implementation case studies. 

Notably, however, there is a dearth of empirical research or case studies of new CA 

methodological developments due to the lack of data availability and difficulties of access to 

companies implementing CA. As a consequence, what is missing from both the academic 

and professional literatures is a rigorous examination of the new CA methodology, and in 

particular, how auditing will cope with the shift from data scarcity to data wealth, from 

periodic and archival to real time streaming data. This is a critical omission since much of 

existing audit practice, methods and standards are driven by lack of data and the cost of 

accessing it: hence auditors do sampling, establish materiality thresholds for investigations 

and carry out analytical procedures before substantive testing of details so that they can 

focus only on likely trouble spots. Will any of these familiar practices survive in an age of 

digital economy with substantially reduced costs and increased capabilities of data storage, 

access and communication?  

While a cost/benefit analysis supports an auditor choosing to base audit procedures 

on limited data when data is very costly to obtain, it is harder to defend continuing to 

constrain the analysis when transaction level raw (unfiltered) business data is readily 

available. It is the latter situation that the audit profession will increasingly face until auditing 

procedures and systems are developed that can exploit the availability of timely and highly 

disaggregated data. In other words, the audit profession has to either answer the question of 

what it plans to do with all the data that it is progressively obtaining, data which provides the 

level of detail an order of magnitude beyond the sampled, highly aggregated data that is the 

basis of much of the current audit methodology—or else, to explain why data is being 

thrown away unused. It is incumbent on the auditors to develop methodologies that exploit 

                                                 
6
 CFO.com, June 26, 2006.  



 4 

that opportunity so that they can provide their clients with higher quality, more effective and 

efficient audits.  

One of the hypotheses driving this research is that making use of the transaction 

level data one can design expectation models for analytical procedures which have an 

unprecedented degree of correspondence to underlying business processes. Creating 

business process based benchmarks requires data at a highly disaggregated level, far below 

the level of account balances that are used in most analytical procedures today, such as ratio 

or trend analysis. Testing the content of a firm’s data flow against such benchmarks focuses 

on examining both exceptional transactions and exceptional outcomes of expected 

transactions. Ideally, CA software will continuously and automatically monitor company 

transactions, comparing their generic characteristics to observed/expected benchmarks, thus 

identifying anomalous situations. When significant discrepancies occur, alarms will be 

triggered and routed to the appropriate stakeholders.  

The objective of this project is to explore the benefits of using business process 

based analytical procedures to create a system of continuous data level auditing.  

An important innovation in the proposed architecture of the CA system is the 

utilization of analytical monitoring as the second (rather than the first) stage of data analysis. 

The first component of the proposed CA system utilizes automatic transaction verification 

to filter out exceptions, which are transactions violating formal BP rules. The second 

component of the system creates business process audit benchmarks, which we denote as 

Continuity Equations (CE), as the expectation models for process based analytical 

procedures. The objective of having audit benchmarks consisting of CEs is to capture the 

dynamics of the fundamental business processes of a firm, but since those processes are 

probabilistic in nature, the CEs have to be data driven statistical estimates. Once identified, 

CEs are applied to the transaction stream to detect statistical anomalies possibly indicating 

business process problems.  

We validate the proposed CA system design using a large set of the supply chain 

procurement cycle data provided by a large healthcare management firm.  This allows us to 

examine what form the CEs will take in a real world setting and how effective they are in 

detecting errors. While the data is not analyzed in real time, the extent of the data we use 

mimics what a working data level CA system would have to deal with and it provides a 
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unique testing ground to examine how audit procedures will adapt to deal with the 

availability of disaggregated data. In order to maintain the integrity of the database and to 

avoid slowing down priority operational access to it, the data will be fed in batches to the CA 

system. But even daily downloads undertaken overnight will still provide a far reduced 

latency between transaction and assurance than anything available today.  

Transaction detail data are generated by three key business processes in the 

procurement cycle: the ordering process, the receiving process, and the voucher payment 

process. The CE models of these three processes are estimated using the statistical 

methodologies of linear regression, simultaneous equation modeling, and vector 

autoregressive models. We design a set of online learning and error correction protocols for 

automatic model inference and updating. We use a seeded error simulation study to compare 

the anomaly detection capability of the discussed models. We find that under most 

circumstances the use of real time error correction results in superior performance.  We also 

find that each type of CE models has its strengths and weaknesses in terms of anomaly 

detection. These models can be used concurrently in a CA system to complement one 

another. Finally, we demonstrate that the use of disaggregated data in CE can lead to better 

anomaly detection when the seeded errors are concentrated, while yielding no improvement 

when the seeded errors are dispersed.  

In summary, the results presented in this paper show the effectiveness benefits of 

continuous data level auditing over standard audit procedures. Firstly, the use of 

disaggregated business process data allows the detection of anomalies that slip through the 

analytical procedures applied to more aggregated data. In particular, our results show that 

certain seeded errors, which are detected using daily, are not detected using weekly metrics. 

There is even less chance to detect such errors using monthly or quarterly metrics, which is 

the current audit practice. Secondly, the enabling of real time error correction protocol 

provides effectiveness benefits above and beyond the use of disaggregated business process 

data. Even if conventional audit takes advantage of such data, it will not achieve the same 

level of anomaly detection capability as continuous data level audit since, as shown by the 

results in this paper, certain anomalies will not be detected without prior correction of 

previous anomalies. Since conventional auditors will have to investigate all the anomalies at 

the end of the audit period, the time pressure of the audit is likely to prevent from rerunning 
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their analytical procedures and conducting repeated additional investigations to detect 

additional anomalies after some previously detected ones are corrected. 

The remainder of this paper is organized as follows. Section 2 provides a review of 

the relevant literature in auditing, CA, business processes and AP upon which our work is 

based and to which the results of the paper contribute. Section 3 describes the design and 

implementation of data-oriented CA systems, Section 4 discusses the critical decision choice 

of how to aggregate the transactional data, and the CE model construction using three 

different statistical methods, with Section 5 comparing the ability of the CE-based AP tests 

in detecting anomalies under various settings. Section 6 discusses the results, identifies the 

limitations of the study, and suggests future research directions in this domain. Section 7 

offers concluding comments.  

II. Literature Review 
This paper draws from and contributes to multiple streams of literature in system 

design, continuous auditing and analytical procedures.  

Continuous Auditing 

The initial papers on continuous auditing are Groomer and Murthy (1989) and 

Vasarhelyi and Halper (1991). They pioneered the two modern approaches toward designing 

the architecture of a CA system: the embedded audit modules and the control and 

monitoring layer, respectively. The literature on CA since then has increased considerably, 

ranging from the technical aspects of CA (Kogan et al. 1999, Woodroof and Searcy 2001, 

Rezaee et al. 2002, Murthy 2004, Murthy and Groomer 2004, etc.) to the examinations of the 

economic drivers of CA and their potential impact on audit practice (Alles et al. 2002 and 

2004, Elliott 2002; Vasarhelyi 2002, Searcy et al. 2004). Kogan et al. (1999) propose a 

program of research in CA. In the discussion of the CA system architecture they identify a 

tradeoff in CA between auditing the enterprise system versus auditing enterprise data. A 

study by Alles et al. (2006) develops the architecture of a CA system for the environment of 

highly automated and integrated enterprise system processes, and shows that a CA system 

for such environments can be successfully implemented on the basis of continuous 

monitoring of business process control settings. A study published by the Australian 

Institute of Chartered Accountants (Vasarhelyi et al, 2010) summarizes the extant state of 

research and practice in CA. 
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This paper focuses on the enterprise environment in which many business processes 

are not automated and their integration is lacking, and proposes to design a CA system 

architecture based on data-oriented procedures. In this development, it utilizes the approach 

of Vasarhelyi et al. (2004) that introduces four levels of CA assurance having different 

objectives. More specifically, this paper develops a CA methodology for the first and third 

CA levels: transaction verification and assurance of higher-level measurements and 

aggregates.7  

The unavailability of data to researchers is the likely cause of a lack of empirical and 

case studies on CA in general and on analytical procedures for CA in particular. This paper 

contributes to the CA literature by providing empirical evidence to illustrate the advantages 

of CA in real-time problem resolution. More specifically, we show that potential problems 

can be detected in a more timely fashion, at the transaction stream level as opposed to the 

account balance level.  Traditionally, analytical procedures are applied at the account balance 

level after the business transactions have been aggregated into account balances. This would 

not only delay the detection of potential problems but also create an additional layer of 

difficulty for problem resolution due to a large number of transactions that are aggregated 

into accounting numbers. The focus on auditing the underlying business processes alleviates 

this problem by utilizing much more disaggregated information in continuous auditing.  

We develop a CA data-oriented methodology around the key economic processes of 

the firm. This approach can also be viewed as an extension to CA of the modern business 

process auditing approach proposed by Bell et al. (1997). They advocate a holistic approach 

to auditing an enterprise: structurally dividing a business organization into various business 

processes (e.g. the revenue cycle, procurement cycle, payroll cycle, and etc.) for the auditing 

purpose. They suggest the expansion of the focus of auditing from business transactions to 

the routine activities associated with different business processes.  

Vasarhelyi and Halper (1991) are the first to take advantage of online technology and 

modern networking to develop a procedure for continuous auditing. Their study introduces 

the concept of continuous analytical monitoring of business processes, and discusses the use 

of key operational metrics and analytics to help internal auditors monitor and control 

AT&T’s billing system. They use the operational process auditing approach and emphasize 

                                                 
7 The other two levels are compliance and judgment verification.  
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the use of metrics and analytics in continuous auditing. This is the first study to adopt the 

term ―Continuity Equations‖ which is used in modeling of how billing data flowed through 

business processes and accounting systems at AT&T. The choice of the expression by 

Vasarhelyi and Halper is driven by the fact that as with the conservation laws in physics, in a 

properly functioning accounting control system there should not be any ―leakages‖ from the 

transaction flow. 

This paper develops the application of the concept of CE to model the relationships 

between the metrics of key business processes, while building on the original implementation 

of CA as described in Vasarhelyi and Halper (1991). The broader implications of their model 

have been obscured in the subsequent focus of the CA literature on technology enablers and 

the frequency of reporting. Attaining the full potential of CA requires the utilization of not 

only of its well known capability of decreasing audit latency, but also of taking advantage of 

data availability to create audit benchmarks that are not only timelier but provide more 

accurate, detailed and dynamic models of fundamental business processes.  

Analytical Procedures 

Auditing is defined as “a systematic process of objectively obtaining and evaluating evidence 

regarding assertions about economic actions and events to ascertain the degree of correspondence between those 

assertions and established criteria and communicating the results to interested users.”8 Thus the scope of 

auditing is driven not only by what evidence is available, but also whether there exist 

benchmarks—the ―established criteria‖—to compare that audit evidence against. Those 

benchmarks provide guidance about what the data is supposed to look like when drawn 

from a firm operating without any anomalies.  

One of the key roles played by benchmarks in modern auditing is in the 

implementation of Analytical Procedures (AP), which Statement on Auditing Standards 

(SAS) No. 56 defines as the ―evaluation of financial information made by a study of plausible 

relationships among both financial and nonfinancial data‖. SAS 56 requires that analytical procedures 

be performed during the planning and review stages of an audit, and recommends their use 

in substantive testing in order to minimize the subsequent testing of details to areas of 

detected concern. That sequence is dictated because manually undertaken tests of detail are 

                                                 
8 Auditing Concepts Committee (1972, page 18). 
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so costly that they are resorted to only if the account balance based AP tests indicate that 

there might be a problem.  Both the timing and nature of standard analytical procedures are 

thus brought into question in a largely automated continuous auditing system with 

disaggregated data. Analytical procedures reduce the audit workload and cut the audit cost 

because they help auditors focus substantive tests of detail on material discrepancies. 

There are extensive research studies on analytical procedures in auditing. Many 

papers discuss various analytical procedures ranging from financial ratio analysis to linear 

regression modeling that focus on highly aggregated data such as account balances (Hylas 

and Ashton 1982, Kinney 1987, Loebbecke and Steinbart 1987, Biggs et al. 1988, Wright and 

Ashton 1989, Hirst and Koonce 1996). The percentages of errors found using such analytical 

procedures are usually not high, varying between 15% and 50%. Only a few papers examine 

analytical procedures for more disaggregated data. Dzeng (1994) compares 8 univariate and 

multivariate AP models using quarterly and monthly financial and non-financial data of a 

university, and concludes that disaggregated data yields better precisions in a multivariate 

time-series based expectation model. Other studies also find that applying AP models to 

higher frequency monthly data can improve analytical procedure effectiveness (Chen and 

Leitch 1998 and 1999, Leitch and Chen 2003, Hoitash et al. 2006). By contrast, Allen et al. 

(1999) use both financial and non-financial monthly data of a multi-location firm and do not 

find any supporting evidence that geographically disaggregate data can improve analytical 

procedures. 

In this study we build a data level CA system which utilizes CE based analytical 

procedures applied to even more highly disaggregate daily metrics of business processes. We 

investigate several different probabilistic models of those business processes to serve as our 

CE based audit benchmark: the Linear Regression Model (LRM), the Simultaneous Equation 

Model (SEM), the Vector Autoregressive Models (VAR), and the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model. The use of SEM in 

analytical procedures has been examined by Leitch and Chen (2003), but only using monthly 

financial statement data. Their finding indicates that SEM can generally outperform other 

AP models including Martingale and ARIMA. 

As far as we can ascertain, the Vector Autoregressive Model has not been fully 

explored in the auditing literature. There are a number of studies utilizing univariate time 
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series models (Knechel 1988, Lorek et al. 1992, Chen and Leitch 1998, Leitch and Chen 

2003), but only one, by Dzeng (1994), which uses VAR. Dzeng concludes that VAR is better 

than other modeling techniques in generating expectation models, and he specifically 

recommends using Bayesian VAR (BVAR) models.  The computational complexity of VAR 

used to hamper its application as an AP model, since appropriate statistical tools were not 

readily available in the past. However, the recent developments in statistical software 

facilitate the application of this sophisticated model.9 The VAR model can not only represent 

the interrelationships between BPs but also capture their time series properties. Although (to 

the best of our knowledge) VAR has been discussed only once in the auditing literature, 

studies in other disciplines have either employed or discussed VAR as a forecasting method 

(see e.g., Swanson 1998, Pandher 2002). Detailed statistical development of the VAR 

methodology and related issues can be found in Enders (2004). 

The GARCH model is a time series model that uses past variances to forecast 

current period variances (Enders 2003 and Engle 2001). Since it can capture the volatility of 

time series data, it is widely used in financial economics literature (Lamoureux and Lastrapes 

1990; Hentschel 1995, Heston and Nandi 2000). This study includes the GARCH model as a 

CE candidate to check whether the utilization of past variance information can improve the 

identification of BP anomalies. 

III. Design and Implementation of  a Continuous Data Level 
Auditing System 

The objective of a CA system designed in this study is to provide close to real-time 

assurance on the integrity of certain enterprise business processes. As in conventional 

auditing, such a system can utilize two different types of procedures: those monitoring 

business process controls and those substantively analyzing business process transactions. As 

Alles et al. (2006) indicate, business process control monitoring requires that the client 

possesses a modern integrated IT infrastructure, and faces challenges even then. They also 

show that even today few firms have the type of tight, end to end system integration that 

continuous control monitoring depends upon. This paper focuses on designing a CA system 

for the much more common enterprise environments in which data is derived from multiple 

                                                 
9 Starting with version 8, SAS (Statistical Analysis System) allows users to make multivariate time series 
forecasts using an advanced VARMAX procedure. 
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legacy systems that lack centralized and automated controls. This lack of a control based 

monitoring system is why the proposed CA system is data-oriented instead, and the 

provision of assurance is based on verifying transactions and on business process based 

analytical procedures. Where the IT environment allows, CA would ideally encompass both 

continuous (data level) assurance (CDA) and continuous control monitoring (CCM)10. 

The architecture of the designed data level CA system is driven by the procedures it 

has to implement. While the subject matter it deals with is quite different from that in 

conventional auditing, one can view its procedures as analogous to automated substantive 

audit procedures, including detailed transaction testing and analytical procedures. Therefore, 

the two main components of the CA system are those executing automatic transaction 

verification and CE based automatic analytical business process monitoring, as shown in 

Figure 1.  

[Insert Figure 1 here] 

A salient feature of the architecture we propose in Figure 1 is the Business Data 

Warehouse which serves as the data integration point for the disparate (mostly legacy) 

systems in the enterprise system landscape. As explained below, in a large enterprise 

environment, the lack of such data warehouse would make a CA system infeasible due to the 

prohibitive complexity, cost and complications associated with data access.  

An important innovation in the proposed architecture of the CA system presented in 

Figure 1 is the utilization of analytical monitoring as the second (rather than the first) stage 

of data analysis. In conventional (manual) auditing, testing transactional details is very 

laborious and has to be based on statistical sampling to control the cost of auditing. 

Therefore, analytical procedures are utilized first for the identification of areas of concern to 

focus the sampling on. In CA, which utilizes automated transaction verification tests, there is 

no need for sampling, since automated tests can be easily applied to the complete population 

of business transactions.  

The implementation of the transaction verification component of the CA system is 

based on identifying business process rules and formalizing them as transaction integrity and 

validity constraints. Every recorded transaction is then checked against all the formal rules in 

                                                 
10

 See Alles et al. (2006b) and Alles et al. (2007) for the discussion of continuous control monitoring. 
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the component, and if it violates any of the rules, then the transaction is flagged as an 

exception. Every exception generates a CA alarm in the CA system, which it sends to the 

appropriate parties for resolution. Since the alarm specifies which formal business process 

rules are violated by the exception, resolving exceptions should be a fairly straightforward 

task. Once the transaction data is verified, it is in an acceptable form to be used to develop 

the CE based audit benchmarks for AP. 

Detailed Data Provisioning 

Enterprise systems that support key business processes routinely collect business 

process data in the unfiltered highly disaggregated form. If the enterprise has implemented 

an integrated ERP system, then BP data is readily available in the ERP central database. 

However, the most common current situation is that the enterprise system landscape 

consists of a patchwork of different systems, many of which are legacy ones and are often 

file-based. In such enterprise systems direct real-time access to business process data is 

highly problematic, if at all possible at any reasonable expense of time and effort. Therefore, 

a data-oriented CA system usually cannot be cost-effectively deployed in such environment 

unless the enterprise deploys an overlay data repository commonly known as ―Business Data 

Warehouse‖. This is a relational database management system specially designed to host 

business process data provided by the other enterprise systems, including the legacy cycle-

focused ones (such as sales processing or accounts receivable). While the main functionality 

of a data warehouse is online analytical processing, the CA system developed here relies only 

on its function as the global repository of business process data. The availability of 

disaggregated business process data makes it possible for the auditor to access any raw, 

unfiltered and disaggregated data that is required for the construction and operation of CE 

based AP tests, and is thus the critical enabler of the proposed CA system. 

Data Description  

Our simulated implementation of the data-oriented CA system focuses on the 

procurement-related business processes and utilizes the data sets extracted from the data 

warehouse of a healthcare management firm with multi-billions of dollars in assets and close 

to two hundred thousand employees. The firm is a major national provider of healthcare 

services, with a network composed of locally managed facilities that include numerous 

hospitals and outpatient surgery centers all over the US and overseas. A key strategic driver 
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for the firm is the management of their supply chain which provides everything from paper 

towels to heart/lung machines to their various operating units through dozens of 

warehouses spread throughout the United States.  

The organization provided extracts from their transactional data warehouse which, 

while only a sample limited in time and geography, still encompassed megabytes of data, 

several orders of magnitude more detailed than anything typically examined in a standard 

audit. The data sets include all procurement cycle daily transactions from October 1st, 2003 

through June 30th, 2004. The number of transaction records for each activity ranges from 

approximately 330,000 to 550,000. These transactions are performed by ten facilities of the 

firm including one regional warehouse and nine hospitals and surgical centers.  The data was 

first collected by the ten facilities and then transferred to the central data warehouse in the 

firm’s headquarters.  

Transaction Verification 

Following the BP auditing approach, as the first step, we identify the following three 

key business processes in the supply chain procurement cycle: ordering, receiving, and 

voucher payment, which involve six tables in our data sets.  Since this data is uploaded to the 

data warehouse from the underlying legacy system, there are numerous data integrity issues, 

which have to be identified by the transaction verification component of the CA system 

before the data is suitable for AP testing. To simulate the functionality of the transaction 

verification component, we formally specify various data validity, consistency, and referential 

integrity constraints, and then filter through them all the available transactions. 

Two categories of erroneous records are removed from our data sets: those that 

violate data integrity and those that violate referential integrity. 

 Data integrity violations include but are not limited to invalid purchase 

quantities, receiving quantities, and check numbers.11  

 Referential integrity violations are largely caused by many unmatched 

records among different business processes. For example, a receiving 

transaction cannot be matched with any related ordering transaction. A 

payment was made for a non-existent purchase order.  

                                                 
11 We found negative or zero numbers in these values which can not always be justified by our data provider. 
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Before any analytical model can be built, these erroneous records must be eliminated.  

This removal simulates the action of the transaction verification component of the CA 

system. Potentially, in a very tightly integrated enterprise environment with automated 

business process controls, such transactional problems may have been prevented by the 

client’s ERP system. 

An additional step in the transaction filtering phase is to delete non-business-day 

records. Though we find that sporadic transactions have occurred on some weekends and 

holidays, the number of these transactions accounts for only a small fraction of that on a 

working day. However, if we leave these non-business-day records in the sample, these 

records would inevitably trigger false alarms simply because of low transaction volume. 

While the simulated verification of transactions relied on fairly straightforward 

business rules described above, the client firm considered that just the exceptions identified 

at this stage were a major source of value added from the project. It is to be anticipated that 

as legacy systems are gradually superseded by the firm’s ERP system with stronger 

automated controls, the transaction verification component of the CA system will be 

catching fewer and fewer problems. Conversely, the fact that any were caught at all indicates 

the value of this element of automated continuous auditing, since these transaction level 

errors had escaped detection by the standard practices being employed by the firm’s internal 

auditors.  

Business Process Based Analytical Procedures 

The transaction verification stage of continuous data level auditing is based on user 

specified rules designed to catch obvious errors in individual business events. The object of 

analytical procedures is the ―study of plausible relationships among both financial and nonfinancial 

data‖ in order to detect anomalous patterns in the firm’s performance and the way in which 

it is reported.  

The implementation of the analytical procedure (AP) component of the CA system 

first requires creation of the process level continuity equations which can provide 

benchmarks for these tests.  Instead of testing transaction by transaction for obvious errors, 

the AP test contrasts the stream of data against a probabilistic model of what that data 

should look like if there were no untoward events happening in the firm. Such models 
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usually take the form of statistically stable relationships between business process metrics 

(and possibly some exogenous factors). Every business process metric is calculated over a 

subset of transactions corresponding to intervals along some important business process 

dimensions (such as time, region, product, customer, etc). Since the relationship between the 

metrics holds only probabilistically, the model also has to specify the acceptable range of 

variation of the residuals. An anomaly arises when the observed values of the metrics result in 

residuals which fall outside this acceptable range. Every anomaly generates a CA alarm in the 

CA system, which it sends to the appropriate parties for resolution. A rating of the 

seriousness of the error could also be passed along to these parties. 

In contrast with an exception, which is associated to an individual transaction, an 

anomaly is associated with a subset of transactions used to calculate the values of the 

metrics. Therefore, the resolution of an anomaly is not straightforward. Moreover, an 

anomaly is not necessarily indicative of a problem, since it can be due to statistical 

fluctuation. 

As mentioned above, in the workflow of the proposed data-oriented CA system the 

first stage of processing is the verification of transactions. It has to be contrasted with the 

fact that in conventional auditing analytical procedures are used first to identify areas of 

concern, and then transaction testing is focused on the identified risky areas. The rationale 

for this sequence is that it makes it possible to reallocate the sample counts so as to increase 

either the effectiveness or the efficiency of substantive testing. Since in this CA system the 

verification of transactions is automatically performed, it can be applied to the entire 

population of data without the need for sampling. Therefore, the transaction verification 

component of the CA system processes every transaction in the business process stream, 

and serves as a filter screening out the identified exceptions. Then this filtered stream of 

transactions is further processed by the analytical procedures component of the system to 

ascertain the absence of anomalies. Thus, the CA system reverses the sequence of 

procedures of traditional auditing to capitalize on the capabilities of modern IT to verify the 

entire stream of business transactions against the formalized set of process rules.  

The rationale for analytical procedures in the proposed CA architecture is many-fold. 

First, one can never assume that the set of formalized business process rules completely 

defines the set of constraints business transactions have to satisfy. Given this possibility, 
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analytical procedures serve as the second line of defense. Anomalies identified by the CA 

system can signal the presence of likely abnormal transactions that are not discovered by the 

user defined rules of the transaction verification filter. This is an indication either of some 

exceptional event, such as fraud, or if the anomaly occurs often enough, of the need to 

update the rule set of the transaction verification system. Additionally, analytical procedures 

can be a critical ―second line of defense‖ if the transaction verification component fails for 

whatever reason. 

Second, analytical procedures can identify certain business process irregularities that 

cannot be caught in principle by the transaction verification component because they are not 

due to the violation of any business rules. For example, in this specific area of procurement, 

there is a possibility that a batch of purchase orders may be destroyed without any 

notification by the delivery mechanism external to the enterprise. In this case, the 

unexpected drop-off in item deliveries can be identified as anomalous by the analytical 

procedures, which will thus provide the precious early warning of a process problem. 

Another procurement-related example has to do with regular payments of vendor invoices 

to take advantage of early payment discounts. Then, the process rules may not require 

payments before the invoice due date, while the practice is to pay early. If, say, due to a 

staffing change in the accounts payable department, the early payments are not processed on 

time, there will be no violation of process rules, but the analytical  procedures would still be 

able to signal an anomaly after identifying an unexpected decline in the number of payments 

processed. Human investigations of anomalies identified by the analytical procedures should 

be able to discern the root cause of the anomalies (if any) and initiate the necessary 

corrective actions. It may be possible to introduce additional artificial intelligence / expert 

systems techniques to differentiate ―real‖ anomalies from those due to statistical fluctuation 

(see e.g., Murthy and Swanson 1992). 

Another reason that necessitates the use of analytical procedures in CA is due to the 

possibility that individual transactions may be in perfect compliance with the business 

process rules and all pass the transaction verification stage, while taken together they deviate 

from the desirable behavior. Such instances include the so-called ―channel stuffing‖ or the 

breaking-up of purchase orders to circumvent the authorization limit. 
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At this stage of this research project into continuous data level assurance we are only 

investigating the efficacy of CE based AP tests in detecting generic errors. Much more 

research is needed to create a library of anomalous business patterns that can be loaded into 

the CA system and serve to direct human auditors to particular problem areas. Before that 

can happen, we must first show that it is possible to create process level benchmarks, the 

continuity equations, in the first place.  

IV Models of  Continuity Equations 
Following the BP auditing approach, the three key business processes for the 

obtained sample were ordering, receiving, and voucher payment processes. The analytical 

procedures component of the CA system is based on benchmarks which model the 

interrelationships between these processes. A critical issue in modeling business processes 

analytically is the choice of BP metrics. The traditional accounting choice has been the use of 

financial measures (e.g., dollar amounts), driven in the first place by the reliance on ledger 

entries as the primary source of data. In a data environment where disaggregate data is 

available, however, modeling business processes can also be undertaken using other types of 

non-financial metrics such as physical measurements or document counts. The dollar 

amounts of each transaction or the number of transactions processed can also be used. In 

this study the transaction item quantity is selected as the BP metric. There is no conceptual 

reason why analytical procedures cannot utilize multiple metrics to examine transaction 

flows. 12 Auditing on different metrics would enable auditors to detect a more diverse set of 

patterns of firm behavior.13  

Once the BP metrics are chosen, the next step is to determine the appropriate degree 

of aggregation at which it is appropriate to conduct the AP test, and hence, the 

characteristics of the data used to construct the CE based benchmark.   

                                                 
12 The advanced audit decision support systems used at AT&T (Vasarhelyi and Halper 1991) provided views of 
different variables if chosen by the auditor including: number of calls, minutes, dollars and modified dollars). 
13 We need to perform audits on different metrics besides financial numbers. For example, the Patriot Act 
requires that banks should report the source of money for any deposit larger than US$100,000 by its client. 
However, the mandatory reporting controls can be bypassed by dividing the deposit over $100,000 into several 
smaller deposits. Even though the deposit amount each time is under the limit, the total number of deposits 
should be a cause for concern. Auditors can only catch such fraudulent activity by using the number of deposit 
transactions as one of the audit metrics.  
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Data Aggregation 

The main argument against using aggregated data is that it inevitably leads to a loss 

of information about individual transactions. Thus, investigating an anomalous aggregated 

business process metric requires an examination of a large number of transactions that were 

aggregated to calculate the metric. But aggregation can also make it possible to see more 

general patterns. There has been extensive debate in the profession over how and to what 

extent to aggregate transactional data, and whether to use ledger accounts as a means of 

summarizing data. The key difference is that in a disaggregated data environment and with 

the technical ability to process such large data sets, the degree and nature of aggregation is 

now a choice that is open to auditors to make, rather than one forced on them by 

measurement constraints.  

The main statistical argument for aggregation is that it can reduce the variability 

observed among individual transactions. For example, the transaction quantity can differ 

greatly among individual transactions, as well as the lag time between order and delivery, and 

delivery and payment. By aggregating the individual transactions, this variance can be 

significantly reduced, thus allowing more effective detection of material anomalies. The 

fluctuations among individual transactions can also be smoothed by aggregation, which 

facilitates the construction of a stable model. Otherwise, it would be infeasible to derive a 

stable model based on data sets with large variances because the model would either trigger 

too many alarms or lack the detection power. On the other hand, if individual transactions 

are aggregated over a longer time period such as a week or a month, then the model would 

fail to detect many abnormal transactions because the abnormality would be mostly 

smoothed out by the longer time interval. Thus, the inescapable tradeoff that the more 

aggregated the metrics are, the more stable the analytical relationships are likely to be at a 

price of more missed detection. In the mean time, any anomaly involving a metric with 

higher level of aggregation, requires a more extensive (and expensive) investigation of the 

larger subpopulation of transactions if an alarm is triggered. Daily and weekly aggregations 

used in this analysis are natural units of time that should result in a reasonable trade-off 

between these two forces. Aggregation can be performed on other dimensions besides the 

time interval, and the choice of the aggregation levels has to be made on a case by case basis 

considering the inherent characteristics of the underlying transactional data.  
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This study uses intermediate aggregates of transactions, such as aggregates of 

transactions of different units in the enterprise, aggregates of transactions with certain 

groups of customers or vendors. This is a novelty since traditional substantive testing is done 

either at the most disaggregated level, or at the most aggregated level. Substantive tests of 

details of transactions are done at the most disaggregated level of individual transactional 

data, but this is done in order to verify the correctness of that individual transaction rather 

than to gain a perspective of the overall business process. Tests of details of account 

balances are obviously applied at the most aggregated level. All standard analytical 

procedures are used for analyzing the account balances or the largest classes of transactions. 

As our results show, analysis of intermediate aggregates can provide more confidence when 

making audit judgments about anomalies and give the auditor a means of thinking about the 

underlying business process as a whole. 

Summary statistics of the data used in the analysis are presented in Table 1. 

[Insert Table 1 here] 

As discussed above, we select transaction item quantity as the primary metric for 

testing as opposed to dollar amounts, and we do so for two reasons: First, we want to 

illustrate that CA can work efficiently and effectively on operational (non-financial) data; 

second, in our sample set dollar amounts contain noisy information including sales discounts 

and tax. We aggregate the transaction quantities for the ordering, receiving, and voucher 

payment processes respectively. After excluding weekends and holidays and several 

observations at the beginning of the sample period to reduce noises in the sample, we have 

180 days of observations in our data sets for each business process. 

Continuity Equations: Simultaneous Equation Model 

We investigate probabilistic models that can serve as candidates for our continuity 

equation benchmarks of the firm’s supply chain processes: a Simultaneous Equation Model 

(SEM), Vector Autoregressive (VAR) models, a Linear Regression Model (LRM) and a 

GARCH model. The SEM can model the interrelationships between different business 

processes simultaneously while the linear regression model can only model one relationship 

at a time, but the latter is less computationally demanding. In SEM each interrelationship 

between two business processes is represented by an equation and the SEM-based CE 
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model consists of a simultaneous system of two or more equations which represent the 

business processes that make up the organization.  

In SEM and LRM we specify the daily aggregate of order quantity as the exogenous 

variable while the daily aggregates of receiving quantity and payment quantity are 

endogenous variables. Time stamps are added to the transaction flow among the three 

business processes. The transaction flow originates from the ordering process at time t. 

After a lag period Δ1, the transaction flow appears in the receiving process at time t+ Δ1. 

After another lag period Δ2, the transaction flow re-appears in the voucher payment 

processes at time t+Δ2. Taking into account the possibility of partial or combined deliveries, 

as well as partial or combined payments, the application of the SEM methodology to these 

procurement processes yields the following set of equations:14 
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The next step in constructing the simultaneous equation model is to estimate the 

lags. One can utilize various lag sample statistics such as the mode, the median, and the 

mean, as lag estimates. Our results indicate that the mode estimate works best among all 

estimates for the simultaneous equation model. Since in our sample the mode of the lags 

equals one day, the model to be estimated is: 
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where 
order  = daily aggregate of transaction quantity for the purchase order process 
receive = daily aggregate of transaction quantity for the receiving process 
voucher = daily aggregate of transaction quantity for the voucher payment process 
t = transaction time 
 

We divide our data set into two groups. The first group consisting of the first 100 

days is categorized as the training set and used to estimate the model. The second group 

                                                 
14 Alles et al. (2006b) develop these statistical CE relationships from the underlying theoretical business 
processes of the firm’s supply chain. In this paper adopt a purely statistical approach towards CE creation.  
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consisting of the remaining days is categorized as the hold-out set and used to test our 

model. The simultaneous equation model estimated on the training set is as follows: 
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The R squares for the equation are 0.73 and 0.79 respectively, which indicate a good 

fit of data for the simultaneous equation model. It is important to point out some limitations 

associated with SEM. First, the lags have to be separately estimated and such estimations are 

not only time-consuming but also prone to errors. Second, the SEM is a simplistic model. 

Each variable can only depend on a single lagged value of the other variable. For example, 

vouchert can only depend on receivet-1 even though there is a strong likelihood that it can also 

depend on other lagged values of the receive variable. Due to these limitations, we need to 

develop a more flexible CE model.  

Continuity Equations: Vector Autoregressive Model 

We continue to follow the BP auditing approach and use daily aggregates of 

transaction item quantity as audit metric to develop the VAR models. However, unlike in the 

case of SEM, in the case of VAR, no lag estimation is necessary, and every variable can 

depend on multiple lagged values of the variables in the model. Only the maximum lag 

period needs to be specified. All possible lags within the period can be tested by the model. 

We select 13 days as the maximum lag because 90% of the lags of all the individual 

transactions fall within this time frame. Our basic multivariate time series model is expressed 

as follows: 

 ordert = Φoo*M(order)+ Φro*M(receive)+ Φvo*M(voucher)+ εo 

 receive t = Φor*M(order)+ Φrr*M(receive)+ Φvr*M(voucher)+ εr 

 vouchert = Φov*M(order)+ Φrv*M(receive)+ Φvv*M(voucher)+ εv 

where 

M (order)= n*1 vector of daily aggregates of order quantity  

M (receive)= n*1 vector of daily aggregates of receive quantity  

M (voucher)= n*1 vector of daily aggregates of voucher quantity  
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Φ = corresponding 1*n transition vectors 

Again we split our data set into two subsets: the training set and the hold-out set. 

SAS VARMAX procedure is used to estimate the large VAR model. Despite the fact that 

this model is a good fit to our data sets, the predictions it generates for the hold-out sample 

have large variances.15 In addition, a large number of the parameter estimates are not 

statistically significant. We believe the model suffers from the over-fitting problem. 

Therefore, we apply a step-wise procedure shown in Figure 2 to restrict the insignificant 

parameter values to zero and retain only the significant parameters in the model. First, we 

determine a p-value threshold for all the parameter estimates.16 Then, in each step, we only 

retain the parameter estimates under the pre-determined threshold and restrict those over 

the threshold to zero, and re-estimate the model. If new insignificant parameters appear, we 

restrict them to zero and re-estimate the model. We repeat the step-wise procedure several 

times until all the parameter estimates are below the threshold, resulting in a Subset VAR 

model.  

[Insert Figure 2 here] 

The step-wise procedure ensures that all the parameters are statistically significant 

and the over-fitting problem is largely eliminated. One of our estimated Subset VAR models 

is expressed as: 

ordert = 0.24*order t-4 + 0.25*order t-14 +  0.56*receive t-15 + eo 

receive t= 0.26*order t-4 + 0.21*order t-6 + 0.60*voucher t-10 + er 

vouchert =0.73*receivet-1 - 0.25*ordert-7 + 0.22*ordert-17 + 0.24*receivet-17+ ev 

Thus, the over-parameterization problem can be resolved by step-wise procedures to 

transform the general form VAR into Subset VAR. However, it requires auditors’ time and 

judgment to reduce the general form VAR model into Subset VAR model, which is 

antithetical to the automated nature of the CA system.  

Recent development in Bayesian statistics, however, allows the model itself to 

control parameter restrictions. The BVAR model includes prior probability distribution 

                                                 
15 We find that the MAPEs for predictions of Order, Receive, and Voucher variables are all over 54%, much 
greater than the MAPEs of the Simultaneous Equation Model, the linear regression model and the subset VAR 
model. Refer to Section V for MAPE definition. 
16

 We find that if we use p=15% threshold, the resulting VAR models have the overall best prediction accuracy. 
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functions to impose restrictions on the parameter estimates, with the covariance of the prior 

distributions controlled by ―hyper-parameters‖. In other words, the values of hyper-

parameters in the BVAR model control how far the model coefficients can deviate from 

their prior means and how much the model can approach an unrestricted VAR model (Doan 

et al. 1984, Felix and Nunes 2003). The BVAR model can release auditors from the burden 

of parameters restriction to derive the Subset VAR model. Thus, in this study we utilize both 

the BVAR and Subset VAR variants of the VAR model. 

 

Continuity Equations: Linear Regression Model 

In the linear regression model we specify the lagged values of daily aggregates of 

transaction item quantity in the order process and the receive process as two independent 

variables respectively, and the voucher payment quantity aggregate as the dependent variable. 

Again, we use the mode values of lags in individual transactions as estimates for the lags in 

the model (i.e. 2 day lag between the ordering and voucher payment processes, and 1 day lag 

between the receiving and voucher payment processes).   No intercept is used in our model 

because all the voucher payments are processed for delivered orders. Our OLS linear 

regression model is expressed as follows: 

 vouchert = a*ordert-2 + b*receivet-1 + ε 

Again we use the first 100 days of our data set as the training subset to estimate our 

model. The estimated linear regression model is: 

 vouchert = 0.08* ordert-2 + 0.67* receivet-1 + et 

The estimate of the coefficient of the order variable (a) is statistically insignificant 

(p>0.68) while the coefficient of the receive variable (b) is significant at 99% level 

(p<0.0001). 

Continuity Equations: GARCH Model 

 The GARCH model, primary used in time series analysis of financial data sets, has a 

wide range of applications. It captures the volatility of the past data and uses this 

information to predict future volatility. We use the GARCH model in this study to examine 

whether it can improve the identification of anomalies. We specify a GARCH(p,q) 
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regression model for our data set, in which the current period voucher is dependent on past 

order and receive daily aggregates. A general model is presented as follows: 

vouchert = a*ordert-2 + b*receivet-1 + εt 
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where te ~ IN(0,1), ω > 0, αi > 0, γj > 0 

εt = the residual used for GARCH estimation 

Due to the limitations of the current SAS version (9.1), we have to use the 

AUTOREG procedure with GARCH parameters (instead of VARMAX GARCH) for the 

anomaly detection purpose. This approach basically modifies our estimation of the the linear 

regression model to account for possible heteroscedasticity. We utilize the most common 

variant GARCH(1,1) of the model. An example of the regression part of the estimated 

model is shown as follows: 

tttt receiveordervoucher   12 *6645.0*0788.0
 

Online Model Learning Protocol 

One distinctive feature of analytical modeling in CA is the automatic model selection 

and updating capability. Traditional analytical modeling is usually based on static archival 

data sets. Auditors generally apply one model to the entire audit dataset. In comparison, 

analytical modeling in CA can be based on the continuous data streams dynamically flowing 

into the CA system. The analytical modeling in CA thus has the potential to assimilate the 

new information contained in every segment of the data flows and adapt itself constantly. 

The online model learning protocol we utilize in this study is shown in Figure 3. Each newly 

updated analytical model is used to generate a prediction only for one new segment of data. 

In the first step shown in Figure 3, data segments from 1 through 100 are used to estimate 

the model and use it to predict the new segment 101. After that, the new segment (101) is 

used together with the previous dataset to infer the next model. If the size of the previous 

dataset is small, the new segment is simply added without removing the oldest one from the 

dataset, as shown in Figure 3. After the dataset used for model inference becomes 
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sufficiently large, it is preferable to use the so-called ―sliding window‖ approach, in which 

the size of the training dataset is kept constant, and the addition of a new data segment is 

combined with removing the oldest one. This model updating procedure is expected to 

improve prediction accuracy and anomaly detection capability. 

[Insert Figure 3 here] 

V. Anomaly Detection Comparison across CE Models 

MAPE Comparison 

While performing analytical procedures, auditors use various methods to make 

predictions on account numbers. It is desirable for expectation models to make forecasts as 

close to actual values as possible.  Many prior AP studies evaluate expectation models in 

terms of prediction accuracy (Kinney 1978, Wild 1987, Dzeng 1994, Allen et al. 1999, Chen 

and Leitch 1998, Leitch and Chen 2003). Following this line of research, we compared the 

prediction accuracies for the CE models in this study using a measure of prediction accuracy 

called Mean Absolute Percentage Error (MAPE). Additionally, we compared the CE models 

on their error detection ability.  

MAPE, the absolute value of the difference between the predicted value and the 

actual value measured as a percentage of the actual value, is a commonly used metric of 

prediction accuracy. It is expected that a good model should have a small MAPE. The 

training set is first used to estimate each of the models. Then, each estimated model is used 

to make one-step-ahead forecasts and the forecast variance is calculated. After that, the 

model is updated based on the new data feeds in the hold-out set and the previous steps are 

repeated. Finally, all the absolute variances are summed up and divided by the total number 

of observations in the hold-out sample to compute the MAPE. The results for MAPE of 

Voucher predictions are presented in Table 2. 

[Insert Table 2 here] 

The results indicate that as measured by the MAPE metric the prediction accuracies 

of these models are close. The BVAR version of the VAR model has the best prediction 

accuracy (MAPE=0.3330), followed by the Subset VAR model (MAPE=0.3374), though the 

standard deviation for the BVAR model is slightly higher than that of the Subset VAR. The 

SEM has the lowest prediction accuracy of 0.3499. These prediction accuracies indicate that 
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the forecasts generated by the expectation models usually differ from the reported amounts 

by approximately 30%. 

There are no universal criteria to determine whether these prediction accuracies are 

good or not because MAPE values are data dependent. Prior studies (Kinney 1978, Wild 

1987, Chen and Leitch 1998) on expectation models indicate that large variances exist in 

prediction accuracies when different data sets are used. The MAPE values reported in Wild’s 

(1987) study range from 0.012 for Cost of Goods Sold prediction to 7.6 for Cash and 

Security prediction using the same expectation model. Our conclusion is that by the MAPE 

metric, all candidate CE models show promise as benchmarks for AP tests.  

Error Detection Ability Comparison 

 A continuity equation is a means towards an end and not an end in itself. The 

rationale for constructing a CE-based AP test is to enable the detection of anomalies 

effectively and efficiently. Thus while predicting the value of a variable with low MAPE is 

desirable, more useful is the ability to detect errors.  

To measure the detection capability of the three CE models we use two metrics: the 

number of false positive errors and the number of false negative errors.17  A false positive 

error, also called a false alarm or a type I error, is a non-anomaly mistakenly detected by the 

model as an anomaly. A false negative error, also called a type II error, is an anomaly not 

detected by the model. While a false positive error can waste auditor’s time and thereby 

increase audit cost, a false negative error is usually more detrimental because of the material 

uncertainty associated with the undetected anomaly. An effective and efficient AP model 

should keep both the number of false positive errors and the number of false negative errors 

at a low level. 

To compare the anomaly detection capabilities of the CE models under different 

settings we randomly seed eight errors into the hold-out sample. We also test how the error 

magnitude can affect each AP model’s anomaly detection capability with five different 

magnitudes used in every round of error seeding: 10%, 50%, 100%, 200% and 400% of the 

                                                 
17 For the presentation purposes, we also include the tables and charts showing the detection rate, which equals 
1 minus the false negative error rate. 
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original value of the seeded observations. The entire error seeding procedure is repeated ten 

times to reduce selection bias and ensure randomness.18 

Prior AP studies discuss several investigation rules to identify an anomaly (Stringer 

1975, Kinney and Salaman 1982, Kinney 1987). A modified version of the statistical rule 

(Kinney 1987) is used in this study. Prediction intervals (PI), equivalent to a confidence 

interval for an individual dependent variable, are used as the acceptable thresholds of 

variance. If the value of the prediction exceeds either the upper or lower limits of the PI, 

then the observation is flagged as an anomaly. 

The selection of the prediction interval is a critical issue impacting the effectiveness 

of the AP test. The size of the prediction interval is determined by the value of the 

significance level α. Choosing a low α value (e.g. 0.01), leads to wide tolerance boundaries 

(i.e. large prediction interval) and a resulting low detection rate. On the other hand, if a high 

α value is selected, then the prediction interval will be overly narrow and many normal 

observations will be flagged as anomalies. To solve this problem, we have followed two 

approaches to select the prediction interval percentages. In the first approach, α values are 

selected to control the number of false positive errors in various models. More specifically, 

an α value is selected which is just large enough to yield two false positive errors in the 

training data set. In the second approach, which is the traditional one, predetermined α 

values, 0.05 and 0.1, are used for all the expectation models.  

Before we can use this methodology to compare the CE models, another critical 

issue needs to be addressed, an issue that only arises in a continuous audit setting: real time 

error correction.  

Real-time Error Correction 

 An important distinction between CA techniques and standard auditing that was 

explored in this project is what we call ―Real Time Error Correction‖. In a CA environment 

when an anomaly is detected, the auditor will be notified immediately and a detailed 

investigation, if relevant, can be initiated. In theory, the auditor can then have the ability to 

correct the error before the next round of audit starts.  

                                                 
18 Leitch and Chen (2003) use both positive and negative approaches to evaluate the anomaly detection 
capability of various models. In the positive approach all the observations are treated as non-anomalies. The 
model is used to detect the seeded errors. In contrast, the negative approach treats all observations as 
anomalies. The model is used to find the non-anomalies. This study only adopts the positive approach because 
it fits better the established audit practice for AP tests. 
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 Whether this technical possibility can or will be carried out in practice depends both 

upon the speed at which error correction can be made and the more serious issue of the 

potential threat to auditor independence of using data in subsequent tests that the auditor 

has had a role in correcting. These issues clearly require detailed consideration, but what we 

focused on at this stage was quantifying the benefits of real time error correction in a CA 

environment. These issues clearly require detailed consideration, but doing so is beyond the 

scope of the current study. What we focus on here is the technical implication for AP in CA 

if errors are indeed detected and corrected in real time in a CA environment. Specifically, 

when the AP model detects a seeded error in the hold-out sample, we examine the 

consequences on subsequent error detection if the seeded error is corrected by substitution 

of the original value before the model is used again. 

For comparison purpose, we test how our candidate CE models work with and 

without real time error correction. Unlike continuous auditing, anomalies are detected but 

usually not corrected immediately in traditional auditing. To simulate this scenario, we don’t 

correct any errors we seeded in the hold-out sample even if the AP model detects them.  

[Insert Table 3 here] 

One can argue that it is possible in principle to utilize error correction in traditional 

auditing. However, since traditional auditors will have to investigate all the anomalies at the 

end of the audit period, the time pressure of the audit is likely to prevent them from 

rerunning their analytical procedures and conducting additional investigations over and over 

again to detect additional anomalies after some previously detected errors are corrected. 

Overall, the results show lower false negative error rates for all CE models with error 

correction, especially when the error magnitude is large (100% or more). This finding is 

consistent with the prior expectation. Under some rare circumstances, the non-correction 

model has slightly better detection rate than the correction model. All these exceptions occur 

when the error magnitude is small (no larger than 50 percent). Higher false positive error 

rates, mostly when error magnitudes are large, are observed for the error-correction models, 

which means that the error-correction models can detect more anomalies but at a cost of 

triggering more false alarms. However, a further investigation reveals that the false alarms are 

mostly caused by certain records in the holdout sample, which are called in this study 

―original anomalies‖. These original anomalies are very likely to be caused by measurement 
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errors since our dataset consists of un-audited operational data. This measurement error 

problem with non-audited data is also reported by previous studies (Kinney and Salamon 

1982, Wheeler and Pany 1990). Because the non-correction model would not correct those 

undetected errors, the impact of original anomalies, whose values remain constant, would be 

eclipsed by the increase in seeded error magnitude. Therefore, the non-correction model 

would trigger fewer false alarms when the magnitude in seeded error increases. On the other 

hand, the impact of original anomalies would not decrease as the error-correction model 

would correct all detected errors.  

Auditors are usually more averse to false negative errors than to false positive errors 

if the false positive error rate is kept at a reasonable level. The cost of false positive errors is 

only a waste of auditor’s time and effort, while the cost of false negative errors can be 

potentially catastrophic and detrimental to the client firm and auditor’s reputation. In 

summary, the error-correction models have better anomaly detection performance than the 

non-correction models. Thus, the real time error correction protocol can improve the 

anomaly detection performance, and the enabling of this protocol is an important benefit of 

continuous auditing. 

Another noteworthy finding is that the α value, as expected, controls the tradeoff 

between the false positive and false negative error rates. A large α value leads to more false 

positive errors but fewer false negative errors. Meanwhile, a small α value leads to fewer false 

positive errors but more false negative errors. It should also be noted that even though the 

BVAR model generally has the best detection performance, its false positive rate is also the 

highest among all models. Another finding is that even though we use the α value which 

only yields two false positive errors in the training data set for each CE model, the number 

of false positive errors generated in the hold-out sample is not equal among the CE models. 

This study does not control the number of false positive errors in the hold-out sample 

because it can lead to a look-ahead problem. Specifically, the data in the hold-out sample can 

not be used to construct CE models since they would not be available in the real world when 

the auditor builds expectation models. 

Disaggregated versus Aggregated Data 

This study examines if the use of disaggregated data can make CE models perform 

better than based on the aggregated data. Data can be aggregated on different dimensions, 
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and we compare the efficacy of CE based AP tests using temporal and geographic 

disaggregation. 

  In the temporal disaggregation analysis we examine the differential anomaly 

detection performances using weekly versus daily data. Errors are seeded into the weekly 

data in the same fashion as in previous simulations. We follow prior studies (Kinney and 

Salamon 1982, Wheeler and Pany 1990) in the choice of methods to seed errors into the 

daily data. In the best case scenario, the entire weekly error is seeded into a randomly 

selected day of a week. In the worst case scenario, the weekly error is first divided by the 

number of working days in a week (five) and then seeded into each working day of that 

week. In addition to the different aggregation levels of data comparison, the error-correction 

and non-correction models are again compared to verify if the previous findings still hold. 

Due to the scope of this study we only use a single α value 0.05 in all models. The results are 

presented in Figure 4 A/B for the BVAR model.   

[Insert Table 4 and Figure 4 in here] 

The results are generally consistent with our expectations. In terms of detection 

ability, all the CE models perform the best using the best case scenario daily data, followed 

by the weekly data. All the models have the poorest anomaly detection performance using 

the worst case scenario daily data. This result is not surprising because the weekly error is 

spread evenly into each day making the seeded error act as a systematic error which is almost 

impossible to detect (Kinney 1978). With respect to false positive error rates, the results are 

mixed. We believe that the original anomalies in our data sets caused this problem. In the 

cross model comparison the BVAR model generally detects more errors than other models 

but at the same time triggers more false alarms. The linear regression model generally has 

fewer false alarms but suffers from low detection rate when error magnitudes are small. 

  We repeat the analyses aggregating data on the geographic dimension and obtain 

similar results. Overall, our results show that the use of disaggregated business process data 

allows the detection of anomalies that slip through the analytical procedures applied to more 

aggregated data (normally utilized in traditional auditing), thus demonstrating the 

effectiveness of CA. 
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VI Discussion 

Limitations of the Analysis 

Our data sets are extracted from a single firm, which may constitute a selection bias. 

Until we test our data level CA system using other firms’ data sets, we will not have empirical 

evidence to support the claim that our AP models are portable and can be applied to other 

firms. In addition, our data sets contain noise, as indicated by the fact that there are 

preexisting anomalies in our data. Since our data sets are actually extracted from a central 

data warehouse which accepts data from both ERP and legacy systems in the firm’s 

subdivisions, it is inevitable for our datasets to be contaminated by errors and noise. The 

date truncation problem also produces noise in our data sets. Of course, all AP tests suffer 

from these problems, and they are not unique to the CA environment. 

As with any analytical procedures, a detected anomaly can only indicate the presence 

of a problem, and cannot pinpoint the problem itself, while a failed test of detail (for 

example, a negative confirmation or a reconciliation failure) does, but only if the auditor 

knows which data to test. Business processes can break down for a variety of reasons, some 

―real‖, meaning at the business process level itself, and some ―nominal‖, meaning that even 

if the integrity of the underlying business process is not compromised, the CE may fail to 

represent that.  

An example of a ―nominal‖ violation would be a slowdown in the delivery of 

shipments due to changes in macroeconomic factors, which results in a broken CE model 

due to a shift in the value of the time lag. This is not indicative of a faulty business process, 

but an inevitable outcome of trying to fit the changing reality into a benchmark constructed 

using obsolete data. Thus, the auditor’s investigation is bound to identify this situation as a 

false positive, unless the CE model is able to adapt accordingly. 

The CE model is expected to signal the presence of anomalies in cases where the 

underlying business process is compromised, as for example when a strike affects a supplier 

or when a raw material becomes scarce. The purpose of using CE-based AP tests is to detect 

these process errors and then to generate a signal for the auditor to investigate the reasons 

for the broken processes through a targeted investigation of details in as real time as 

possible. This clearly shows the advantage of using continuity equations to relate the most 

disaggregated metrics possible, since the more disaggregated the metrics are the narrower the 
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scope of the auditor’s investigation can be. However, the more disaggregated the metrics, the 

less stable the CE relationship. This is the inescapable tradeoff between the level of 

disaggregation of the metrics and the stability of the continuity equations, as the results of 

this study demonstrate. It is very likely that the stability of relationships will vary widely 

between companies, processes, products, and times of the year. 

Another issue in this study is the selection of the α value which controls the number 

of false positive errors and false negative errors. The optimal α value cannot be obtained 

unless the costs of false positive errors and false negative errors are known. However, while 

it is generally accepted that the cost of false negative errors greatly exceeds that of false 

positive errors, the choice of a particular ratio of these costs is usually highly controversial. 

Additionally, the optimal α value would change as datasets and expectation models change. 

Theoretical work is needed to understand these tradeoffs. 

Future Research Directions 

Since this paper is devoted to a new research area, much work needs to be done. The 

most important issue that has to be addressed is the feasibility of using CE models in 

practice. Few auditors in the field will be willing or able to use statistical methods as 

demanding as those utilized in this project. For continuous data level auditing to be truly 

useful in future CA systems, there will have to be close to a ―black box‖ addition to the audit 

toolkit, which means that at a minimum CE models developed in the laboratory must be 

generally applicable to different firms and processes. Testing the robustness of the CE 

models created using this data on other data sets is on our research agenda. CE models 

should also be compared with other approaches to BP modeling such as neural networks 

and expert systems. The value of including other independent and control variables in our 

models also needs to be examined.  

An important step when implementing continuous data level auditing is in 

determining which business process should be modeled by continuity equations and subject 

to AP testing. There are a large number of business processes that can be modeled—and as 

we have seen, far more data than can currently be handled—and the auditor cannot model 

all of them and indeed, does not need to. Providing assurance only necessitates the 

examination of the key processes that define a business, and these, in turn, will depend on 

the company’s strategy, its product space, competitive environment and current financial 
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condition and history. There needs to be research undertaken on the general question of the 

types of business processes that an auditor is likely to encounter, and the way in which these 

processes can be represented in continuity equations.  

VII Conclusion  
In this paper we develop a continuous data level auditing system utilizing business 

process based analytical procedures. The first component of the system is automatic 

transaction verification to filter out exceptions, which are transactions violating user defined 

business process rules. The second component of the CA system uses continuity equations 

to provide benchmarks for process level AP tests which are applied to the transaction stream 

to identify statistical anomalies possibly indicating business process problems. AP tests are 

needed to complement transaction verification given the inability to define rules for all 

possible exceptions and to identify patterns of anomalous firm behavior.  

This is the first study on the use of detailed data to develop analytical procedures for 

continuous auditing. It is also the first attempt to use empirical data to compare different AP 

models in a CA context. The choice of aggregation level in the AP tests is up to the auditor 

who is not constrained to use data that is already at a high level of aggregation, such as 

account balances.  Hence, the auditor has the freedom to make the tradeoff between 

utilizing more stable metrics by appropriate aggregation versus the resulting loss of 

information content, as opposed to being forced to accept limitation on the data imposed by 

outside circumstances. The highly disaggregated data that underlies CA allows auditors to fit 

equations relating to specific metrics, such as those related to individual business units, or 

individual customers or vendors, or small coherent subgroups of them. The main benefit, as 

compared with traditional analytical procedures is that anomalies can be identified which are 

undetectable at higher levels of aggregation.  

We model flow relationships between different metrics of related business processes 

as a system of continuity equations. We use a seeded error simulation study to compare the 

anomaly detection capability of various CE models. Our results confirm that joint analysis of 

business processes gives the auditor an analytical procedure with a robust capability to detect 

anomalies in a real time continuous auditing environment with highly disaggregated data.   
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An important methodological innovation of this study is the examination of the 

capabilities of CA to investigate and correct identified problems in (close to) real time. We 

therefore introduce a real time error correction protocol in our simulation study and examine 

the differential detection capabilities between models with error correction and without error 

correction. We show that, as expected, under most circumstances the use of real time error 

correction results in superior performance. 

Overall this study finds that while there are differences in the predictive ability and 

anomaly detection performance of various CE models, all models perform well and no single 

model performs better on all aspects. From this we can draw two important conclusions.  

First, that unlike in the traditional audit literature on analytical  procedures, the 

inability to choose a model across the candidate CE models is less important than the fact 

that all models yield efficient AP tests.  The point is that because of its automated and 

technology driven nature, it is quite feasible and even desirable for the continuous data level 

audit system to use benchmarks based on multiple CE models instead of being forced to 

select only one, as would be necessary in a more manual system. For example, the BVAR 

model can be used first to detect anomalies because it has a low false negative error rate. 

Subsequently, the simultaneous equation model and the linear regression model can be used 

to remove the false alarms from the BVAR-detected anomalies because these two models 

have relatively low false positive error rates.  

Our second conclusion from the fact that all the CE models yield reasonably 

effective analytical procedures is that when auditors have access to transaction data, the 

richness of that disaggregate data combined with the ability to make real time error 

correction makes error detection robust across a variety of expectations models. In other 

words, it is the nature of the data that serves as audit evidence that is the primary driver of 

audit effectiveness, with the selection of the specific analytical procedure a second order 

concern—not because the audit benchmark is not important, but because auditing at the 

process level makes errors stand out much more obviously in the data.  

These are key conclusions in support of continuous data level auditing and its ability 

to make use of transaction data, implement real time error correction and give auditors the 

choice of the degree of aggregation. Future research on applying this CA methodology 
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across different firms and different data sets is necessary to see whether these conclusions 

are robust, and to examine what their implications are for audit practice.   
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Figure 1: Architecture of Data-Oriented Continuous Auditing System 
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Figure 2: Multivariate Time Series Model Selection 
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Figure 3: Model Updating Protocol 
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Table 1: Summary Statistics 

 
 

   Variable N  Mean  Std Dev Minimum Maximum 

    
   Order 180  10631.38 6840.51 4597  51392 
   Receive 180  8876.26 3195.16 4430  31412 
   Voucher 180  7496.74 3874.47 187   31209 

 
 
The table presents the summary statistics for the transaction quantity daily aggregates for each business 
process. The low minimums for Receive and Voucher are due to the date cutting off problem. The data sets 
span from 10/01/03 to 06/30/04. Many related transactions for the Receive and Voucher for the first 2 days 
in the data sets may have happened before 10/01/03. 
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Table 2: MAPE Comparison among BVAR, Subset VAR, GARCH, SEM and Linear 
Regression Model: Prediction Accuracy for Daily Quantity Aggregate of Entire 
Company’s Vouchers 

 

 MAPE Std. Dev Min Max 

BVAR 0.3330 0.3282 0.0008 1.5739 

Subset VAR 0.3374 0.3210 0.0044 1.9180 

SEM 0.3779 0.4403 0.0034 2.6275 

LRM 0.3499 0.3677 0.0007 2.2481 

GARCH 0.3461 0.3611 0.0007 2.1850 

 

MAPE:     Mean Absolute Percentage Error 

Std. Dev:  Standard deviation for Absolute Percentage Error 

Min: The minimum value for Absolute Percentage Error 

Max:    The maximum value for Absolute Percentage Error 
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Table 3: Error Rates Comparison between Error-correction and Non-correction 

Using Daily Quantity Aggregate Data , α=0.05 

 

 False Positive False Negative 

 Error 
Magnitude 

Error 
Correction 

Non- 
Correction 

Error 
Magnitude 

Error-
Correction 

Non-
Correction 

Bayesian 
 
VAR 

10% 0.342 0.336 10% 0.5500 0.5500 

50% 0.339 0.328 50% 0.3750 0.4000 

100% 0.340 0.318 100% 0.2125 0.2500 

200% 0.344 0.293 200% 0.0625 0.1250 

400% 0.344 0.250 400% 0 0.0250 

Subset 
 
VAR 

10% 0.039 0.039 10% 0.925 0.925 

50% 0.039 0.025 50% 0.825 0.825 

100% 0.039 0.014 100% 0.615 0.663 

200% 0.039 0.004 200% 0.212 0.350 

400% 0.039 0.002 400% 0.013 0.200 

SEM 10% 0.1386 0.1386 10% 0.8125 0.8125 

50% 0.1342 0.1200 50% 0.775 0.775 

100% 0.1412 0.1000 100% 0.425 0.425 

200% 0.1400 0.0629 200% 0.1875 0.25 

400% 0.1331 0.0286 400% 0.025 0.1125 

LRM 10% 0.09 0.09 10% 0.8625 0.8625 

50% 0.089 0.0643 50% 0.8125 0.8125 

100% 0.089 0.0457 100% 0.525 0.6125 

200% 0.09 0.0286 200% 0.1875 0.2875 

400% 0.09 0.02 400% 0.0125 0.175 

GARCH 10% 0.0875 0.0875 10% 0.8625 0.8625 

50% 0.0861 0.0583 50% 0.8125 0.8125 

100% 0.0861 0.0431 100% 0.525 0.6125 

200% 0.0875 0.0264 200% 0.1875 0.2875 

400% 0.0875 0.0194 400% 0.0125 0.1625 
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Table 4: False Negative Error Rates Comparisons (Weekly, Weekly Best Case, 
Weekly Worst Case) 

 

 Error 
Magnitude 

Weekly Aggregation Weekly Aggregation 
Best Case  

Weekly Aggregation 
Worst Case  

Error-
Correction 

Non-
Correction 

Error-
Correction 

Non-
Correction 

Error-
Correction 

Non-
Correction 

BVAR 10% 0.650 0.675 0.3 0.3 0.650 0.635 

50% 0.125 0.200 0 0 0.350 0.555 

100% 0.025 0.150 0 0 0.070 0.485 

200% 0 0.050 0 0 0.025 0.535 

400% 0 0.025 0 0 0.055 0.675 

Subset 
VAR 

10% 0.800 0.800 0.925 0.925 0.945 0.945 

50% 0.425 0.500 0 0.025 0.885 0.890 

100% 0.050 0.300 0 0 0.615 0.725 

200% 0 0.150 0 0 0.035 0.320 

400% 0 0.175 0 0 0.025 0.180 

SEM 10% 0.850 0.850 0.875 0.875 0.860 0.860 

50% 0.100 0.200 0 0.025 0.810 0.810 

100% 0.050 0.050 0 0 0.255 0.500 

200% 0 0.050 0 0 0.030 0.155 

400% 0 0.050 0 0 0.025 0.035 

LRM 10% 0.900 0.900 0.925 0.925 0.915 0.915 

50% 0.175 0.625 0 0.025 0.855 0.87 

100% 0.025 0.225 0 0 0.435 0.64 

200% 0 0.075 0 0 0.035 0.24 

400% 0 0.050 0 0 0.025 0.09 

GARCH 10% 0.9 0.9 0.8 0.8 0.915 0.915 

50% 0.175 0.65 0.025 0.025 0.805 0.835 

100% 0.05 0.275 0 0.025 0.43 0.565 

200% 0 0.075 0 0 0.015 0.185 

400% 0 0.075 0 0 0.015 0.045 
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Figure 4: BVAR Model Comparisons  
 
A. BVAR Model False Positive Rate Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 

 
B. BVAR Model False Negative Rate Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 

 
Entire-EC: Error correction model using entire company data 
Entire-NC: Non-correction model using entire company data 
Best-EC: Error correction model using mean subunit best case scenario data 
Best-NC: Non-correction model using mean subunit best case scenario data 
Worst-EC: Error correction model using mean subunit worst case scenario data 
Worst-NC: Non-Error correction model using mean subunit worst case scenario data 

0.15

0.20

0.25

0.30

0.35

0.40

0% 100% 200% 300% 400%

Error Magnitude

Fa
ls

e 
Po

si
tiv

e 
E

rr
or

 R
at

es

Entire-EC

Entire-NC

Best-EC

Best-NC

Worst-EC

Worst-NC

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0% 100% 200% 300% 400%

Error Magnitude

F
al

se
 N

eg
at

iv
e 

E
rr

or
 R

at
es

Entire-EC

Entire-NC

Best-EC

Best-NC

Worst-EC

Worst-NC


